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Abstract
We study a fluid model of an infinitesimally thin plasma sheet occupying the
xy plane, loosely imitating a single base plane from graphite. In terms of
the fluid charge e/a2 and mass m/a2 per unit area, the crucial parameters
are q ≡ 2πe2/mc2a2, a Debye-type cutoff K ≡ √

4π/a on surface-parallel
normal-mode wavenumbers k, and X ≡ K/q. The cohesive energy β per unit
area is determined from the zero-point energies of the exact normal modes of
the plasma coupled to the Maxwell field, namely TE and TM photon modes,
plus bound modes decaying exponentially with |z|. Odd-parity modes (with
Ex,y(z = 0) = 0) are unaffected by the sheet except for their overall phases,
and are irrelevant to β, although the following paper shows that they are
essential to the fields (e.g. to their vacuum expectation values), and to the
stresses on the sheet. Realistically one has X � 1, the result β ∼ h̄cq1/2K5/2

is nonrelativistic, and it comes from the surface modes. By contrast, X � 1
(nearing the limit of perfect reflection) would entail β ∼ −h̄cqK2 log(1/X):
contrary to folklore, the surface energy of perfect reflectors is divergent rather
than zero. An appendix spells out the relation, for given k, between bound
modes and photon phase-shifts. It is very different from Levinson’s theorem
for 1D potential theory: cursory analogies between TM and potential scattering
are apt to mislead.

PACS numbers: 03.65.−w, 03.70.+k, 11.10.−z, 12.20.−m, 36.40.Gk,
42.50.Pq

1. Introduction

1.1. Background and motivation

By Casimir effects one commonly understands the consequences of changes in the quantized
Maxwell field due to the introduction of macroscopic bodies described merely by their
geometry and by their classical electromagnetic response functions. For stationary bodies
such effects are conveniently classified into two main types. The first type embraces forces
between disjoint bodies: spectacular recent advances in experimental techniques have brought
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these to the forefront also of theoretical research, where, apart from ongoing arguments about
nonzero temperatures, the basic principles are no longer in serious question. (See the review
by Bordag et al (2001); later references can be traced for instance from Genet et al (2003) and
from Reynaud et al (2004).)

Problems of the second type concern the energy (and eventually the internal stresses) of
a single body. These questions have long been bedevilled by confusion flowing from their
original focus on material shaped into a spherical shell and treated as infinitesimally thin but
perfectly reflecting (Boyer 1968): a scenario from which it has taken surprisingly long to
progress to theories capable of accommodating less unrealistically modelled media. For the
Maxwell field in the presence of dispersive reflectors, a start has now been made along the
lines of what is traditionally called nonrelativistic quantum electrodynamics: perturbatively
for insulators of several simple shapes (Barton 2001a, 2001b, 2002, Marachevsky 2001a,
2001b), and exactly for an infinitesimally thin spherical plasma shell (Barton 2004a, 2004b,
referred to as B.III and B.IV). The physics of this plasma model, and a critique of older
approaches, are spelled out in B.III. So is a concordance with recent studies of the relations
between Casimir effects and the standard renormalization theory of quantized fields (for scalar
fields coupled to passive potentials, though not as yet for the Maxwell field). This work may
be traced through, say, Graham et al (2004).

However, the quantum physics of such plasmas is more readily appreciated if one explores
also the simpler problem of the same sheet left flat and indefinitely extended; the more so
because the results emerge in closed form, and unobscured by the technical difficulties of
Bessel functions that are unavoidable for spheres. The present paper (B.V, projected on
p 1016 of B.III) does just that as regards the cohesive energy β per unit area. For understanding
the structure of this kind of Casimir problem more generally, perhaps the most important lesson
is that β is indeed the energy of primary physical interest; that there is a fairly straightforward
strategy for calculating it; that the calculation automatically focuses attention on the dominant
parts of β; which then identifies as physically secondary (though mathematically fascinating)
the traditional preoccupations induced by observing that for spherical shells of radius R the
combination h̄c/R has the dimensions of energy, without featuring any material constants.
This accidental fact, without a significant analogue for β (cf section 3.5), can then tempt
one to mis-identify the total cohesive energy B of the sphere as that (relatively unimportant)
component of B which is indeed proportional to h̄c/R, with the very confusing consequences
discussed in B.III.

The following paper (Barton 2005, referred to as B.VI) spells out what the model entails
for the quantized fields, in particular for their ground-state (vacuum) expectation values as
functions of distance z from the sheet. The connections with β are surprisingly subtle: for
instance, the mean-square fields, measurable at least in principle, include crucial contributions
that are nevertheless irrelevant to β because they stem from the self-energies of the charge
carriers.

It is worth stressing that, very deliberately, we work only with the fields: potentials are
not needed and are not introduced1, so that gauge-independence is never in question.

Meant as they are chiefly for preliminary orientation, both this paper and B.VI are
restricted to a plasma sheet without internal dissipation (e.g. without ohmic losses), and at
zero temperature. To relax the first restriction one would elaborate the model along the lines of
Huttner and Barnett (1992) and of Barnett et al (1996) (for recent references see e.g. Suttorp
and Wubs (2004)); and both restrictions would need to be relaxed before the model could

1 Except in section 4 of B.VI, which considers the interaction between the sheet and a charged particle.
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hope to illuminate the currently vexed question of the temperature dependence of the Casimir
attraction between two parallel sheets some finite distance apart.

1.2. Preview and summary

Section 2.1 is a brief sketch of our model as adapted to a flat sheet: most of the basic physics
was discussed in B.III, albeit à propos of a spherical shell. For as long as possible we deal
with a continuous fluid mimicking a number n ≡ 1/a2 of charge carriers per unit area, with
charge ne and mass nm per unit area. However, as B.III also explained, physically sensible
results for cohesive energies emerge only if one imposes a Debye-type cutoff K = √

4π/a

on wave-numbers k parallel to the sheet, motivated in standard fashion by the granularity of
the true underlying material. Further, equation (2.5) will identify a dimensionless parameter
X = amc2/e2√π , whose inverse turns out to measure the effective coupling strength between
fields and plasma: X � 1 indicates weak coupling (the realistic option), while X � 1
would, formally, indicate strong coupling, albeit X → 0 is in fact incompatible with our basic
assumption that the plasma moves nonrelativistically.

The same section defines the nonretarded (NR), the perfectly-reflecting (PR) and the
no-cutoff (NC) limits. The NR limit yields the energies to leading order; it can be accessed
directly through the nonretarded model (appendix B); and it is the only limit relevant to the
present paper. The PR limit (incompatible with the NR) is in the writer’s experience confusing
more often than helpful, but for historical reasons one cannot safely ignore it altogether. It
and some of the prima-facie paradoxes attending it are discussed in appendix F of B.VI. The
NC limit makes no sense for energies, and plays no role in the present paper. By contrast,
on the fields (eg on their mean squares) it is doubtful whether a cutoff should be imposed
at all, seeing that they necessarily include the self-fields. Paper B.VI discusses this question
further, and will in fact proceed without a cutoff, except in some appendices which illustrate
the effects a cutoff would have if one imposed it with one’s eyes closed.

Section 2.2 writes the equations of motion (Maxwell’s for the fields and Newton’s second
law for the plasma); identifies the transverse-electric (TE) and transverse-magnetic (TM)
reflection and transmission coefficients and phase shifts of the continuum (photon) modes; and
determines the normal modes of definite parity, including the surface-bound (surface plasmon)
modes, which are pure TM, and have sharp frequencies �(k). (The relation between phase
shifts and bound modes is pursued further in appendix A.)

Section 3 then determines the (in principle) observable cohesive energy β from the surface-
mode eigenfrequencies � and from the photon phase shifts: β requires no other information
about the normal modes. It is crucially important that to obtain β from the total ground-state
energy, one must exclude both the zero-point energy of the Maxwell field in the absence of
the sheet, and also the self-energy of the charge carriers. The first subtraction is familiar and
almost automatic; the second features the Born approximation to the phase shifts. To leading
order in 1/X, β agrees as it should with B/4πR2, where B (calculated in B.III) is the total
cohesive energy of a spherical shell having radius R.

The various contributions to β are specified by various dimensionless functions L(X).
Exact closed expressions are given in sections 3.2 and 3.3, and relatively transparent asymptotic
approximations in section 3.4. Figures 1–4 indicate how the L vary between the asymptotic
regimes. Section 3.4 also exorcises (once again) the old delusion that the surface energy β

vanishes in the PR limit.
The energy β resides partly in the fields, i.e. off the sheet, and partly on the sheet

as the mean kinetic energy κ of the charge carriers. Section 4 determines κ , requiring
far more detailed information about the normal-mode amplitudes than was needed for β.
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Tables 1 and 2 and figure 5 compare the scaling functions L with their analogues K for
κ . In particular, table 1 shows that for weak coupling one has κ � β/2 for the dominant
surface-plasmon and thereby for the overall energies, as suggested by the virial theorem for
the essentially nonrelativistic surface-mode oscillators; but that the ratios are very different
for the (subdominant) contributions from the photon modes. Finally section 4.3 shows that
X → 0 indeed makes κ comparable to the rest energy of the charge carriers, confirming that
their motion has become relativistic.

Appendix A compares the relations between bound and continuum modes in our
electromagnetic scenario (for given k) with those from 1D potential scattering. In both
cases, the bound modes locate the poles of the transmission and reflection amplitudes in
the complex plane of frequency or of perpendicular wave-number p. But potential and TM
scattering differ sharply regarding the change in the phase shift as the frequency or as p rise
from threshold to infinity. In potential theory, Levinson’s theorem derives this change from
the fact that every bound state is formed from a continuum state attracted below threshold, so
that the total number of states is unaffected by the potential. But in our plasma model a careful
count shows that the TM continuum holds exactly as many modes with as without the sheet.
In other words, the bound mode is additional to the continuum modes, compatibly with the
fact that it exists also in the NR model, which has no continuum to begin with. By contrast,
for TE polarization the analogy with potential theory is complete. These observations will be
presented merely as isolated mathematical facts: the writer knows of no systematic extension
of Levinson’s theorem to electromagnetism. It might prove an interesting problem, if only
because misconceived analogies with potential scattering have led some arguments badly off
the rails.

Finally, we risk the obvious to say that our model is designed for a preliminary exploration
of the consequences of dispersion in Casimir problems, without in any way meaning to pre-
empt calculations on materials modelled differently. In particular, inferences drawn from
the general pattern of our results are subject to caution on dimensional grounds: here, the
important combination (ne)2/(nm) = ne2/m has the dimensions [L−1T −2], in contrast to
3D plasmas which instead of n feature a volume density n′, so that [n′e2/m] = [T −2], with
4πn′e2/m the familiar squared plasma frequency.

2. The model

2.1. The hydrodynamic model

We start with a brief outline of the model introduced in B.III, designed as a loose imitation
of a single base-plane in graphite. It posits an infinitesimally thin and indefinitely extended
flat sheet occupying the xy-plane, carrying a continuous fluid with mass and charge densities
nm, ne per unit area, plus an immobile, uniformly distributed, overall-neutralizing background
charge2. The subscript ‖ indicates vector components parallel to the sheet, and r = (s, z),
i.e. s = r‖ = (x, y). The fluid displacement ξ is purely tangential, with surface charge and
current densities

σ = −ne∇‖ · ξ, J = ne ξ̇. (2.1)

2 One improvement would introduce fluid pressure as a function of density (ie spatial dispersion). Another would
replace the fluid with a 2D Fermi gas (Fetter 1973), which however would thoroughly de-emphasize and probably
obscure the features of most interest to quantum electrodynamics generally, and to Casimir effects in particular.
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The motion is assumed to be nonrelativistic (ξ̇ � c), so that the Lorentz force is negligible,
and Newton’s second law reads3

∂2ξ(s, t)/∂t2 = (e/m)E‖(s, z = 0, t). (2.2)

Evidently the model mimics n delocalized particles per unit area, call them electrons,
each with charge and mass e,m. The surface density n is related to some mean inter-electron
distance a by

n ≡ 1/a2.

Merely for orientation, we shall form rough estimates with a of the order of a few Bohr radii,
far longer than the classical electron radius r0:

a ∼ aB ≡ h̄2/me2, r0 ≡ e2/mc2, r0/a ∼ (e2/h̄c)2 ≡ α � (1/137)2, (2.3)

using unrationalized Gaussian units.
Moreover, we impose a Debye-type cutoff K on the surface-parallel wavenumbers of

waves that the fluid can support, and by the same token also on Maxwell waves that can
interact effectively with the fluid as such (as distinct from the individual charge carriers out of
which in the last analysis the fluid is formed). Paper B.III motivates and discusses the physics
of the cutoff in some detail. Thus,

πK2/(2π)2 ≡ n ⇒ K =
√

4π/a. (2.4)

The no-cutoff limit considered later would break this link by letting K → ∞ with all other
parameters fixed, including a.

By hindsight we define another characteristic wavenumber q ≡ (2π/c2)(ne)2/(nm), and
observe that the input parameters of the model (ne, nm,K , and through Maxwell’s equations
also c) admit only one dimensionless combination4 X:

q ≡ 2πne2/mc2 = 2πnr0, X ≡ K/q = a/r0
√

π ∼ 1/α2 � 1. (2.5)

It will emerge presently that 1/X is, effectively, a coupling-strength parameter: X � 1 means
that the interaction between fields and fluid is weak, and X � 1 means that it is strong (see
e.g. (2.14)–(2.16)).

Regarding dimensions, we anticipate to stress that, as zero-point expectation values, all
our results for energies and mean-square fields are automatically and explicitly proportional
to h̄; and that, conversely, h̄ enters in no other way. Thus we meet no true expansions by
powers of α, which can feature only accidentally. That is what has happened for instance in
(2.5), simply through our choice, in (2.3), of the Bohr radius as our estimate of a.

Likewise it will prove useful to keep track of powers of c. In particular, noting that
q ∼ 1/c2 and X ∼ c2, we stress by hindsight that, dimensionally,[energy

area

]
= [h̄cq3], h̄cq3X5/2 = h̄cq1/2K5/2 = h̄

√
2πne2

m
K5/2, (2.6)

[ energy

volume

]
= [E2] = [B2] = [h̄cq4], h̄cq4X7/2 = h̄cq1/2K7/2 = h̄

√
2πne2

m
K7/2,

(2.7)

the second relation in each line indicating the unique combination that is independent of c.

3 We shall study only small-amplitude oscillations. Uniform flow (strictly constant
·
ξ) is excluded: though it might

seem reasonable for a fluid model taken literally, it is totally unrealistic for the kind solid-state plasmas that we have
in mind.
4 The reader is due an apology for the fact that X in this paper is not the same as the combination R/a which was
called X in B.III and B.IV. Further, what here we call strong coupling in virtue of X � 1 corresponds to what B.III
(p 1013) called strong coupling in virtue of x ≡ e2/mc2a � 1 at fixed R; the flat sheet has no analogue to what B.III
called strong coupling in virtue of R/a � 1 at fixed x.
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Finally, we list three widely considered limits which, though often deceptive, can on other
occasions highlight important features of the more complicated exact results.

• The nonretarded (NR) limit. c → ∞ at fixed a and K, entailing q → 0, with c
√

q fixed
and finite, and X → ∞. The nonretarded model (appendix B) implements the limit
from the start: then there are no photons, and the only excitations of the sheet are surface
plasmons. It yields the far and away dominant component of β, unsurprisingly to the
condensed-state physicist, who has always known that the cohesive energy of more or
less ordinary solids is given to an excellent approximation without reference to Maxwell’s
equations or to quantum electrodynamics.

• The perfect-reflector (PR) limit, designed to make the sheet reflect perfectly at all
frequencies, which will be seen presently to require q → ∞. This can be envisaged
in at least two different ways, bearing in mind that K ∼ 1/a and X = K/q ∼ a/r0:
either (i) a → 0 at fixed r0, so that K → ∞; or (ii) r0 → ∞ at fixed a and therefore
fixed K. It proves important that in both cases X → 0. Though section 4.3 shows that
very small X is incompatible with our basic assumption that ξ̇ � c, it also suggests that
values down to X ∼ 0.1, though certainly fanciful, might not be intrinsically absurd.

• The no-cutoff (NC) limit is artificial in that itabandons the Debye connection between a
and K, and contemplates K → ∞ at fixed a and fixed q, which would also entail X → ∞.
Section 1.2 has already warned that this limit is inadmissible as regards energies. On
the other hand, cutoffs are inappropriate to the fields, and B.VI will proceed without one
except occasionally for illustration.

Reverting briefly to the PR limit, and anticipating section 2.2, we anticipate also that
in a formal sense the approach to this limit appears to present a paradox, because it forces
one to reconcile the two apparently conflicting facts that (i) the odd-parity modes are totally
indifferent to how the sheet reflects; while (ii) in the limit, a perfectly reflecting sheet turns
the half-spaces with z ≶ 0 into electromagnetically independent systems, each having its own
Hilbert space, with the overall Hilbert space just the direct product of the two. Since this
problem bears primarily on the fields rather than on the energies, we postpone more detailed
discussion to B.VI, appendix E.2.

2.2. Maxwell’s equations and the normal modes

For normal modes, with all time variation described by a common factor exp(−iωt),
equation (2.2), and Maxwell’s equations plus (2.1), read

ξ = −(e/mω2)E‖, J = −iωneξ, σ = −ne∇‖ · ξ, (2.8)

∇ · B = 0, ∇ × E − iωB/c = 0, (2.9)

∇ · E = 4πδ(z)σ, ∇ × B + iωE/c = 4πδ(z)J/c. (2.10)

To obtain the matching conditions on the fields, we integrate equations (2.10) across the
sheet, which amounts to applying Gauss’ law and Ampère’s law. They yield

discont(E‖) = 0, discont(Ez) = 2q(c/ω)2∇‖ · E‖, (2.11)

discont(Bz) = 0, discont(B‖) = −i2q(c/ω)ẑ × E‖, (2.12)

equations that determine the normal modes, and mathematically speaking define the model.
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To describe the normal modes we introduce the two-component surface-parallel wave-
vector k, and the surface-normal wave-number p, defined to be strictly non-negative (so as to
avoid redundancy); and, for continuum (ie for photon) modes, their frequency ω:

p � 0, ω = c
√

k2 + p2 (photons). (2.13)

The two polarizations are chosen as TE (with Ez = 0) and TM (with Bz = 0). Then the
reflection and transmission amplitude-ratios (which do not enter our calculations directly) read

RTE = −iq

p + iq
= i sin(η) eiη, T TE = p

p + iq
= cos(η) eiη, (2.14)

RTM = −iqp

k2 + p2 + iqp
= i sin(µ) eiµ, T TM = k2 + p2

k2 + p2 + iqp
= cos(µ) eiµ, (2.15)

featuring the phase shifts η and µ, with

tan η(p) = −q/p, tan µ(p, k) = −c2qp/ω2 = −qp/(k2 + p2). (2.16)

The S matrices for given k are exp(2iη) and exp(2iµ).
The phase shifts are chosen to vanish as p → ∞, so that η(p = 0) = −π/2, while

µ(p = 0, k �= 0) = 0. Appendix A examines this threshold behaviour in the light of
Levinson’s theorem. Meanwhile we note only that at p = 0 the R, T can be determined
almost trivially; and that there is nothing paradoxical about RTM = 0 and T TM = 1 (not even
though in potential scattering this scenario, described as a transmission resonance at threshold,
would be highly exceptional). Excitations with p = 0 are plane waves running parallel to
the sheet, say in the x-direction. (i) The plane-polarized wave with E = ŷE parallel to the
sheet, ie TE, must have B = ẑB. In general such an E induces a current in the sheet, which
by Ampère’s theorem requires a finite discontinuity in the y component of B. Since B has
no such component, this is impossible, and contradiction can be avoided only if E(z = 0)

vanishes. Formally speaking, that is precisely what is achieved by perfect reflection. But in
point of physical fact R = −1 and T = 0 combined with p = 0 mean that all the fields
vanish everywhere, so that the presence of the sheet makes it impossible to excite such waves
in the first place. In other words, since the scenario cannot be realized, it can generate no
paradoxes5.

(ii) The other plane-polarized wave, with B = ŷB, i.e. TM, must have E = ẑE; therefore
it cannot affect the sheet at all, whence the sheet cannot affect the wave, which means precisely
R = 0 and T = 1, as indicated by (2.15) and (2.16).

For our purposes the normal modes are conveniently classified according to the parity (±)

of E‖. Equation (2.2) shows that the odd-parity modes do not interact with the sheet, because
they have E‖(z = 0). Hence they contribute nothing to β, and, once they have been quantized,
this paper will ignore them: but they will reappear in B.VI, because they do contribute to the
mean-square vacuum fields.

The mode functions are chosen and normed for convenience. The (free) odd-parity
amplitudes are(
ETE,−

k,p , BTE,−
k,p , ETM,−

k,p , BTM,−
k,p

) = exp(−iωt + ik · s)

×




i(k̂ × ẑ)k sin(pz)

(ck/ω){−iẑk sin(pz) + k̂p cos(pz)}
(ck/ω){−iẑk cos(pz) − k̂p sin(pz)}

−i(k̂ × ẑ)k cos(pz)


 , (z > 0). (2.17)

5 Between two parallel sheets the situation may be different, because p = 0 might not then force the fields to vanish
everywhere. Such differences may relate to the distinction that Robaschik and Wieczorek (1994) draw between
matching conditions for what they call thick and thin reflectors.
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The (interacting) even-parity modes subdivide into continuum (photon) modes, of both
polarizations, and into bound modes (surface plasmons), which are purely TM. It may be
worth stressing (i) that the surface plasmons are truly bound, i.e. they can travel parallel to the
surface but cannot decay into or be excited by (are orthogonal to) photons; and (ii) that they
are unique to flat geometries. For instance, on the spherical shell considered in B.III, they
feature as narrow resonances in the scattering of TM photons with high angular momenta.
Appendix A discusses how the surface modes show up in enumerating the degrees of freedom
of the system.

The photon amplitudes are(
ETE,+

k,p , BTE,+
k,p , ETM,+

k,p , BTM,+
k,p

) = exp(−iωt + ik · s)

×




i(k̂ × ẑ)k cos(pz + η)

(ck/ω){−iẑk cos(pz + η) − k̂p sin(pz + η)}
(ck/ω){iẑk sin(pz + µ) − k̂p cos(pz + µ)}

i(k̂ × ẑ)k sin(pz + µ)


 , (z > 0). (2.18)

The bound-mode frequency6 �, and a useful allied parameter p̃, are given by

(�/c)2 = 1
2

{− q2 +
√

4q2k2 + q4
} ≡ k2 − p̃2 = qp̃, (2.19)

k2 + p̃2 = 2p̃(p̃ + q/2), dk k = dp̃(p̃ + q/2). (2.20)

Conversely,

k2
sp = (�/cq)2{(�/c)2 + q2}.

Note the asymptotics7

�(k � q) � c
√

qk =
√

2πne2k/m ≡ �NR, (2.21)

where �NR is the surface-plasmon frequency in the NR model (appendix B); while, by contrast,

�(k � q) � ck. (2.22)

Considering RTM, T TM and STM = exp(2iµ) = (1 + i tan µ)/(1 − i tan µ) as functions of
p (or of ω) at fixed k, we can now see that they have the expected bound-state pole at p = ip̃
(or at ω = �). In B.VI these poles prove important for calculating the mean-squared fields.

The amplitudes are(
Ek

Bk

)
= exp(−i�t + ik · s−p̃z)

(
(ck/�)(ẑk − ik̂p̃)

i(k̂ × ẑ)k

)
, (z > 0). (2.23)

If needed, fields and amplitudes at z < 0 are determined by their parity:

E±
‖ (−z) = ±E±

‖ (z), E±
z (−z) = ∓E±

z (z); (2.24)

B±
‖ (−z) = ∓B±

‖ (z), B±
z (−z) = ±B±

z (z). (2.25)

6 The dispersion relation (2.19) may be compared with equation (110) found by Fetter (1973) for a 2D Fermi gas:
ω2 = s2k2 + s2kTF(k2 − ω2/c2)1/2. On the right we first use his (54) and (57b) to set s2 ≡ m−1∂p/∂n = v2

F /2,
where s is a sound velocity governed by the hydrodynamic pressure p, and vF is the Fermi velocity; and then his
(69a) to set s2kTF = qc2, where kTF is the Thomas–Fermi screening constant, and q is our (2.5). Dividing through
by c2 and neglecting v2

F /c2 conformably with our disregard of pressure (or equivalently of any ground-state motion

in the fluid if it were neutral), one obtains (ω/c)2 = q
√

k2 − (ω/c)2, whose solution ω = � reproduces (2.19).
7 They may be compared with the surface-mode frequency ωs on a 3D half-space with dielectric response
ε = 1 − ω2

p/ω2. Then ω2
s = ω2

p/2 + c2k2 − (ω4
p/4 + c4k4)1/2 entails ωs(k � ωp/c) � ωp/

√
2, quite unlike

(2.21), while ωs(k � ωp/c) � ck just as in (2.22).
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2.3. Quantization

The total energy (not yet a Hamiltonian) is∫
d2s

1

2
nmξ̇2 +

∫
d2s

∫
dz

1

8π
(E2 + B2). (2.26)

We must turn it into the quantal Hamiltonian

H = h̄

2

∫
d2k

∫ ∞

0
dp

∑
j

ω
{
a

(j)†
k,p a

(j)

k,p + a
(j)

k,pa
(j)†
k,p

}
+

h̄

2

∫
d2k�

{
a
†
kak + aka

†
k

}
, (2.27)

where j runs over the four combinations (TE,±) and (TM±), and[
a

(j)

k,p, a
(j ′)†
k′,p′

] = δjj ′δ(k − k′)δ(p − p′),
[
ak, a

†
k′
] = δ(k − k′). (2.28)

This is accomplished by writing the field operators, denoted generically by F(j), as

F(j) =
∫

d2k

∫ ∞

0
dp

√
h̄ω

2π2k2
a

(j)

k,pF(j)

k,p +
∫

d2k NkakFk + Hc, (2.29)

where Hc stands for the Hermitian conjugate, and the surface-plasmon normalization constant
is given by

N2
k = h̄�5

2πc4q

1

k2(k2 + p̃2)
= h̄c

2π

(qp̃)3/2

k2(2p̃ + q)
. (2.30)

The present paper aims to use (2.27)–(2.30) to determine, by summing over all normal
modes, first the total-zero point energy β, and then the ground-state expectation value

κ ≡
〈∫

d2s
1

2
nmξ̇2

〉
(2.31)

of the total kinetic energy, both per unit area. The latter will be needed to implement the
restrictions to nonrelativistic motions of the fluid; besides, it is interesting in its own right
because it shows how the retarded results depart from the virial theorem κ = β/2 which
applies in the NR limit.

3. The zero-point cohesive energy β

3.1. Preliminaries

As explained in B.III, one obtains β by (i) subtracting, from the total zero-point energy per
unit area of all modes, the corresponding sum in the absence of the mirror; and then (ii) further
subtracting the self-energy of the same amount of fluid at infinite dilution. This self-energy
is just the first Born approximation to the difference in (i), and for brevity we shall call the
process a Born subtraction. It has certain formal similarities with a procedure central to the
renormalizable theory devised by Graham and others (see, e.g., Graham et al (2004)), although
the physics of their model is significantly different from ours. The two theories are compared
in appendix D of B.III. Here we repeat only that in our model, which unlike theirs is dispersive
but not covariant, the difference (ii) is finite for photon modes integrated over all p, i.e. over all
photon frequencies ω realizable for given k; but that the subsequent integration over k would
diverge without the physically motivated Debye cutoff K.

The main albeit well-understood artificiality of our model, apologies for which will not
be repeated, is that, like all purely plasma models, it makes β positive for all reasonable values
of X. Even for a Fermi gas instead of a continuous fluid, truly cohesive energies, i.e. negative
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β, would emerge only on taking into account the interactions between the ions that make up
the true neutralizing background (see, e.g., Ashcroft and Mermin (1976)).

We subdivide

β = βsp + βph, (3.1)

where the subscripts sp and ph specify surface-plasmons and photons.
It is of the essence that for β one needs only the spectrum, i.e. only the surface-mode

dispersion relation (2.19) and the photon phase shifts (2.16); other details of the normal-mode
amplitudes are irrelevant.

3.2. Surface plasmons

This is by far the simplest contribution, because it is not subject to subtractions of either kind.
By hindsight we change the integration variable from k to y = k/q, with the upper limit
K/q = X; define an auxiliary parameter

X1 ≡ p̃(k = K)/q = [− 1 +
√

4X2 + 1
]
/2; (3.2)

and find

βsp = 1

(2π)2

∫ K

0
2π dkk

h̄�

2
= h̄cq3

4π2
Lsp(X), (3.3)

Lsp(X) ≡ π√
2

∫ X

0
dy y

√
−1 +

√
4y2 + 1 = 2π

5
X

5/2
1 +

π

3
X

3/2
1 . (3.4)

For realistically large X, evidently X1 and X differ little. Then one has

Lsp(X) = X5/2π
{

2
5 − 1

6X−1 + 1
16X−2 + O(X−3)

}
. (3.5)

Since X5/2 = (K/q)5/2, we can write

βsp = h̄cq3

4π2

{
2π

5
X

5/2
1 +

π

3
X

3/2
1

}
= h̄c

√
qK5/2

4π

{
2

5
− 1

6
X−1 +

1

16
X−2 + O(X−3)

}
. (3.6)

The leading term is just the nonretarded result βNR, while the others represent retardation
corrections that vanish as X → ∞.

By contrast, the (unrealistic) perfect-reflector limit would entail X → 0, whence

X1 � X2 ⇒ βsp � h̄cq3X3/12π = h̄cK3/12π (as X → 0). (3.7)

3.3. Photons

3.3.1. The general theory. We deal separately with the two polarizations:

βph = βTE + βTM. (3.8)

For brevity we omit the subscripts whenever the context prevents ambiguity, and use δ

generically for the phase shifts η or µ.
To determine the β we adapt the strategy of B.III as follows. (i) Discretize p by imposing

the auxiliary boundary conditions that E‖ vanish at z = ±L; (ii) determine, for given k, by how
much the allowed values pn are changed on account of the phase shifts, and the corresponding
changes in the allowed frequencies ωn ≡ c

√
p2

n + k2; (iii) find the sum, call it Z(k), of the
consequent changes in ZPE for given k as L → ∞, converting

∑
n into

∫
dp in (almost)

standard fashion; (iv) obtain the integral γ of Z(k) over all k admitted by the Debye cutoff
k < K; and finally (v) obtain β by subtracting from γ the appropriate Born counter-term.
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Since only modes with even E‖ contribute, we need consider only z > 0, where E‖ for
either polarization varies as cos [pnz + δ(pn)]. Recall that, to avoid redundancy, p and the pn

are defined to be non-negative. In fact the pn must be strictly positive: they cannot be zero,
because then E‖ would be a constant, and would vanish everywhere if it vanished at z = L.

The boundary conditions impose

cos [pnL + δ(pn)] = 0 ⇒ pnL + δ(pn) = (n + 1/2)π, (3.9)

with non-negative integer

n = n(min), (n(min) + 1), (n(min) + 2), . . . .

Without the sheet, indicated by superscript (0), we have δ = 0, whence (3.9) and pn > 0
entail

p(0)
n = (n + 1/2)π/L, n(0)(min) = 0, p(0)(min) = π/2L.

For TE modes with the sheet, η(0) = −π/2, whence

p(TE)
n = (n + 1)π/L, n(TE)(min) = 0, p(TE)(min) = π/L.

For TM modes with the sheet, µ(p = 0, k �= 0) = 0, the same as without the sheet, whence the
consequences are also the same:

[
p(TM)

n , n(TM)(min), p(TM)
n

] = [
p(0)

n , n(0)(min), p(0)
n

]
. The

upshot is that with or without the sheet, and for both polarizations, n(min) = 0.
At very high n and thereby very high p, modes with and without the sheet correspond one

to one, because the δ(pn) vanish. Thus the shift �pn and the resultant frequency shift �ωn

induced by the sheet are

�pn = −δ(pn, k)/L, �ωn(k) = −c2p

ωL
δ(pn, k), (3.10)

and the Euler–Maclaurin formula yields the precise version of the rule usually quoted in the
somewhat loose form that

∑
n → ∫

dn → (L/π)
∫

dp, namely
∞∑

n=0

h̄

2
�ωn = h̄

2
�ω0/2 +

L

π

∫ ∞

p(min)

dp
h̄

2
�ω(p, k) + · · · , (3.11)

up to terms that vanish as L → ∞. The sum and the integrals in (3.11)–(3.13) diverge: they
must be understood as short-hand place-holders for the well-defined expressions LTE,TM that
emerge once the Born counterterms are subtracted explicitly in (3.15) and (3.16).

Fortunately we can simplify (3.11) by observing that the lower limit, the integrand and
the addend �ωn(min)/2 are all of order 1/L; therefore, as L → ∞ we can drop the addend,
and replace the lower limit8 by 0. Then γ follows on integrating over all admissible k (which
means acting with

∫
d2k

/(
(2π)2 = 1/(2π)

∫ K

0 dk k
)
:

γ = − h̄

4π2

∫ K

0
dk k

∫ ∞

0
dp

c2p

ω
δ. (3.12)

In terms of conveniently scaled integration variables this becomes

γ = −h̄cq3

4π2

∫ X

0
dy y

∫ ∞

0
dx

x√
x2 + y2

δ, y ≡ k/q, x ≡ p/q, X ≡ K/q. (3.13)

It remains to identify the counterterms. By construction, γ already excludes the ZPE
of the pertinent photons (those with k < K) in the absence of the sheet. What we need to
subtract is the self-energy of a mass nm of fluid at infinite dilution, given by that part of γ

8 Thus the precise value of n(min) turns out to be irrelevant to β. It matters only if one requires (as in Levinson’s
theorem, appendix A) the total number rather than the total energy of the photon modes.
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that is proportional to n as n → 0. Because each tan δ already has an explicit factor of q,
and thereby of n, one obtains the counterterm by replacing the phase-shifts by the first Born
approximation, i.e. by replacing the arctangents by their argument. Thus we find

βTE,TM = h̄cq3

4π2
LTE,TM, (3.14)

featuring the convergent integrals

LTE =
∫ X

0
dy y

∫ ∞

0
dx

x√
x2 + y2

{
tan−1

(
1

x

)
− 1

x

}
, (3.15)

LTM =
∫ X

0
dy y

∫ ∞

0
dx

x√
x2 + y2

{
tan−1

(
x

x2 + y2

)
− x

x2 + y2

}
. (3.16)

Since tan−1(z) < z, both βTE,TM are negative.
In view of this pattern we write

LTE,TM =
∫ X

0
dy yHTE,TM(y), (3.17)

where HTE,TM stand for the integrals over x in (3.15 ), (3.16).
Finally, it should be mentioned for completeness that the contribution to the zero-point

energy from the modes of the continuous spectrum can be approached in another way,
namely through the change in ρ, their density of states. The other method starts from
(3.9), increments n by dn = 1, and observes that the corresponding increment of p is given by
dp(L + ∂δ/∂p) = π dn. In the continuum limit L → ∞ this yields

∑
n

· · · →
∫

dn · · · = (1/π)

∫
dp(L + ∂δ/∂p) . . . ,

between integration limits that deserve attention, for reasons to be mentioned presently. The
L-proportional component is precisely what one has in the absence of the sheet, whence it is
dropped; the term with the derivative of the phase shift can be viewed as a change that the sheet
forces on ρ, with a consequent change (1/2π)

∫
dp(∂δ/∂p)ω(k, p) of zero-point energy. If

the channel in question has bound modes, their contributions must be added by hand; and each
method requires some care to identify and subtract the self-energy consistently. The method
used here is the same as in B.III, its consistency in these respects largely checked by the NR
limit, where there are no such complications. Which method one adopts is a matter of taste:
we have chosen to start directly from the shifts �ωn, partly because they seem closer to first
principles, and partly because integrands featuring the δ rather than the ∂δ/∂p are somewhat
easier to handle.

However, one should note that some caution is needed to go directly from the formulae
of either method to those of the other: complete security with the integrations by parts
connecting

∫
dp(∂δ/∂p)ω and

∫
dp(∂ω/∂p)δ requires a grip on the threshold behaviour of

the phase shifts, i.e. on Levinson’s theorem from appendix A, and therefore also on the role
of the bound modes. The Casimir effect with finite-mass photons (Barton and Dombey 1985)
affords an even more telling example of the need for such caution. By contrast, for simpler
problems without bound modes it is often the density-of-state methods that are preferable: as
for instance for a 1D analogue of our present model (Barton and Calogeracos 1995).
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3.3.2. Results. By contrast to most calculations in B.VI, it is easiest to determine HTE,TM

by integrating along the real x-axis: one reason is that the counterterm (i.e. the second term)
in LTM as it stands is not integrable at the branch point x = iy. All the integrals can be
found in closed form9. They (especially HTM) consume more time than any other evaluation
in this paper, and the critical steps are sketched in appendix C. Fortunately, the subsequent
integrations over y are comparatively straightforward.

It proves convenient to introduce the parameters

X1 ≡ 1
2

[√
4X2 + 1 − 1

]
, X2 ≡ 1

2

[√
4X2 + 1 + 1

]
, X3 ≡

√
X2 − 1, (3.18)

with X1 as in (3.2), and with X1,2 satisfying the identities

X2 − X1 = 1, X1X2 = X2, X2 − X2
1 = X1, X2

2 − X2 = X2. (3.19)

For very large and for very small X

X1,2 = X ∓ 1/2 + O(1/X), X3 = X + O(1/X), (3.20)

X1 = X2 + O(X4), X2 = 1 + X2 + O(X4). (3.21)

For the TE modes appendix C obtains

HTE = 1 − πy

2
+

(
−
√

1 − y2 tanh−1(
√

1 − y2), (y < 1)√
y2 − 1 tan−1(

√
y2 − 1), (y > 1)

)
. (3.22)

Accordingly, to integrate over y one needs to distinguish between the case10 X < 1, which
requires only the first line of (3.22), and the case X > 1, which requires both lines. Changing
the integration variable from y to y2 one finds

LTE = 1

3
X2 − π

6
X3 +

1

3
log

(
X

2

)
+

1

3

(
|X3|3 tanh−1 (|X3|) , (X < 1)

X3
3 tan−1 (X3) , (X > 1)

)
. (3.23)

Note that the upper and lower entries have opposite signs in (3.22), but the same sign in (3.23).
For the TM modes, appendix C eventually finds

LTM = 4X2

5
− 1

15
log

(
X

2

)
−
[

2X
5/2
1

5
+

X
3/2
1

3

]
tan−1

(
1√
X1

)

−
[

2X
5/2
2

5
− X

3/2
2

3

]
tanh−1

(
1√
X2

)
. (3.24)

3.4. General patterns and asymptotics

The photon contributions βTE,TM, which are negative, may now be compared with the surface-
plasmon contribution βsp from section 3.2, which is positive. Conformably to (3.1) and (3.8)
we define

LTE + LTM = Lph, Lph + Lsp = L. (3.25)

9 The writer has learnt the hard way that this is better done by hand than with MAPLE, which in some cases gives
up, and in several others delivers expressions that take longer to reformulate intelligibly than to evaluate ab initio on
paper.
10 Here it proves better to use tanh−1(z) = (1/2) log[(1 + z)/(1 − z)]. Hindsight shows that the end-results for X ≶ 1
are linked by analytic continuation, but there is so much scope for choosing wrong branches that it is unsafe to proceed
except by independent calculations for the two cases. The same is true for y ≶ 1 in (3.22).
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Interest attaches also to the total TM contribution

LT M,total = Lsp + LTM, LTE + LT M,total = L. (3.26)

In the realistic scenario X � 1, the asymptotic expansions read

LTE(X → ∞) = −πX

4
+

1

3
log

(
X

2

)
+

4

9
+ O

(
1

X

)
, (3.27)

LTM(X → ∞) = − 1

15
log

(
X

2

)
− 31

225
+ O(X−3/2), (3.28)

Lsp(X → ∞) = 2π

5
X5/2 − π

6
X3/2 +

πX1/2

16
+ O(X−1/2). (3.29)

Thus TE dominate TM photons, but surface plasmons dominate both. Therefore the end-result
is positive; in fact it is practically the same as for the NR model: recall from (2.6) that h̄cq3X5/2

is free of c.
In the fanciful scenario X � 1, where X is no longer estimated as on the right of (2.5),

one has

LTE(X → 0) = X2

[
1

2
log

(
X

2

)
+

1

4

]
− X3

[π

6

]
+ X4

[
−1

8
log

(
X

2

)
+

3

32

]
+ O(X5),

(3.30)

LTM(X → 0) = X2

[
1

2
log

(
X

2

)
+

3

4

]
− X3

[π

6

]
+ X4

[
1

8
log

(
X

2

)
+

1

32

]
+ O(X5),

(3.31)

Lsp(X → 0) = πX3

3
− πX5

10
+ O(X7). (3.32)

Thus TE and TM photons contribute comparably, and dominate surface plasmons. Therefore
the end-result is negative.

Between the asymptotic regions the various L must be evaluated numerically: all
sign changes occur below but close to X = 1. Figure 1 shows the (negative) photon
contributions, LTE and LTM; figure 2 compares Lph ≡ LTE + LTM, the (positive) surface-
plasmon contribution Lsp, and their sum L, which has a zero near X = 0.7. Figure 3
concerns only the TM sector, comparing the negative photon contribution LTM, the positive
surface-plasmon contribution Lsp, and their sum LTM,total, which changes sign near X = 0.33.
Figure 4 shows the alternative decomposition of Lsp (already featured in figure 2) into its TE
and its total TM components.

Finally we record β itself, to leading order:

β(K/q � 1) � h̄cq3

4π2

2π

5

(
K

q

)5/2

= h̄cq1/2K5/2

10π
, (3.33)

β(K/q � 1) � −h̄cq3

4π2

(
K

q

)2 [
log

(
2q

K

)
− 1

2

]
= −h̄cqK2

4π2

[
log

(
2q

K

)
− 1

2

]
. (3.34)

Notice from (3.34) that β diverges as q → ∞, i.e. in the PR limit: contrary to folklore, the
surface energy of perfect reflectors is negative infinite rather than zero.
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Figure 1. The components of Lph≡ LTE + LTM. Top curve: LTM; bottom curve: LTE.

Figure 2. The surface-plasmon and photon contributions to L ≡ Lsp + Lph. The top, middle and
bottom curves show Lsp,L and Lph, respectively.

Figure 3. The surface-plasmon and photon parts of the transverse-magnetic sector. The top,
bottom and middle curves show Lsp,LTM and LTM,total ≡ Lsp +LTM, respectively. The horizontal
scale is twice that in figures 1, 2 and 4.
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Figure 4. The TE and the total TM contributions to L ≡ LTE + LTM,total. The top, middle
and bottom curves show LTM,total,L and LTE, respectively. The zero of LTM,total evident in
figure 3 is barely visible, because of the smaller vertical scale.

3.5. Boyer terms

We digress briefly to look for analogues of what in B.III were called Boyer terms, defined
as components of the energy that are independent of the material constants parametrizing the
response function. As already mentioned, for the total cohesive energies of spheres of radius
R, dimensionalities admit such components proportional to h̄c/R; indeed, it is from their study
by Boyer (1968) that our field of enquiry has grown. By contrast, for an energy per unit area,
the absence of geometric parameters like R means that components of β can be free of material
constants either (i) in the sense of being free of q, or (ii) in the sense of being free of the cutoff
K and thereby of X , but that they cannot be free of both.

A dimensional check identifies Boyer terms of type (i) as components of L proportional
to X3. Equations (3.27)–(3.29) show that for X � 1 there are none. For X � 1, we see
from (3.30)–(3.32) that such terms do occur as subdominant parts of LTE and LTM, and as
the dominant part of Lsp; but by a remarkable coincidence they cancel from the end-result L.
Consequently, the expansion of L jumps from order X2 to order X4:

L = X2

[
log

(
X

2

)
+

1

2

]
+ X4

[
1

8

]
+ O(X5), (3.35)

whose leading term yields (3.34).
By contrast, Boyer terms of type (ii) are visible in (3.27) and (3.28): their (again

subdominant) contribution to Lph and thence to L is (4/9 − 31/225) = 23/75.

4. The mean kinetic energy κ

4.1. Preliminaries

We determine κ , the ground-state expectation value per unit area of the kinetic energy of the
fluid. It is interesting because (i) it shows just how the exact results depart from the requirement
κNR = βNR/2 of the nonrelativistic virial theorem for the nonretarded model (appendix B);
(ii) it identifies, by default, the part (β − κ) of the cohesive energy that resides in the fields,
i.e. off the sheet; and (iii) it is needed to check for contraventions of our basic assumption that
the fluid moves nonrelativistically (section 4.3 ).
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For comparison with β and L, we define

κ ≡ h̄cq3

4π2
K(X), K = Kph + Ksp, Kph = KTE + KTM. (4.1)

The chief novelty is that, to determine κ (unlike β), one must have quantized the system
explicitly, as in sections 2.2 and 2.3, because now one needs the relation between the fluid
velocity and E‖(z = 0). This stems from (2.8), and for each normal mode reads

ξ̇ = (ie/mω)E‖(z = 0), (4.2)

where ω is � for surface plasmons, and c(k2 + p2)1/2 for photons.
For surface plasmons, the mode expansion (2.29) with the amplitude (2.23) yields

κsp =
∫

d2k
1

2
nm

( e

m�

)2
N2

k

(
ck

�

)2

p̃2.

One uses (2.30) for N2
k , eliminates � in favour of p̃ by (2.19), and changes the integration

variable from k to p̃ by (2.20). This leads straightforwardly to

Ksp = π

5
X

5/2
1 , (4.3)

with X1 as in (3.2) and (3.18). Recalling that X � 1 entails X1 � X, we see that Ksp then
constitutes half the leading term of Lsp as given by (3.6).

For photons,

κph =
∑

j = TE+,TM+

∫ K

0
2π dk k

∫ ∞

0
dp

1

2
nm

〈
ξ̇

(j)2
k,p

〉
. (4.4)

We use the expansion (2.29) with the normal-mode amplitudes (2.18), the dimensionless
integration variables from (3.13), and find

KTE =
∫ X

0
dy y

∫ ∞

0

dx√
x2 + y2

{cos2(η) − 1} = −
∫ X

0
dy y

∫ ∞

0

dx√
x2 + y2

1

[x2 + 1]
, (4.5)

KTM =
∫ X

0
dy y

∫ ∞

0

dxx2

(x2 + y2)3/2
{cos2(µ) − 1}

= −
∫ X

0
dy y

∫ ∞

0

dx

(x2 + y2)3/2

x4[
(x2 + y2)2 + x2

] . (4.6)

The −1 in the initial combinations {cos2(δ) − 1} are the Born subtractions, on exactly the
same footing as in the parallel expressions for β. They subtract the kinetic energy induced in
the fluid by the Maxwell field unaware of the sheet, i.e. with the phase shifts set equal to zero.
Like LTE,TM, both KTE,TM are evidently negative.

4.2. Results

For TE, equation (4.5) leads to

KTE = −
∫ X

0
dy y

{
�(1 − y)

tanh−1(
√

1 − y2)√
1 − y2

+ �(y − 1)
tan−1(

√
y2 − 1)√

y2 − 1

}
, (4.7)

where � is the Heaviside step-function; and thence to

KTE(X) = log

(
X

2

)
+

(|X3| tanh−1(|X3|), (X < 1)

−X3 tan−1(X3), (X > 1)

)
. (4.8)
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Figure 5. Comparing β with the mean kinetic energy κ . The top and bottom curves show their
respective scaling factors L and K. The zero of L evident in figures 2 and 4 is barely visible,
because of the much smaller horizontal scale.

For TM, one must evaluate the x-integral in (4.6), one of the more painful calculations in
this paper. Eventually one finds, with x1,2 ≡ (

√
4y2 + 1 ∓ 1)/2 as in appendix C, that

KTM =
∫ X

0
dy y

{
1 − 1√

4y2 + 1

[
x

3/2
1 tan−1

(
1√
x1

)
+ x

3/2
2 tanh−1

(
1√
x2

)]}

= 2

5
X2 − 1

5
log

(
X

2

)
− X

5/2
1

5
tan−1

(
1√
X1

)
− X

5/2
2

5
tanh−1

(
1√
X2

)
. (4.9)

The asymptotics, to be compared with those of β, equations (3.27)–( 3.32), read

KTE(X → ∞) = −πX

2
+ log

(
X

2

)
+ 1 + O(X−1), (4.10)

KTM(X → ∞) = −1

5
log

(
X

2

)
− 26

75
+ O(X−3/2), (4.11)

Ksp(X → ∞) = πX5/2

5
− πX3/2

4
+

5πX1/2

32
+ O(X−1/2); (4.12)

KTE(X → 0) = X2

[
1

2
log

(
X

2

)
− 1

4

]
+ X4

[
1

8
log

(
X

2

)
+

1

32

]
+ O(X6), (4.13)

KTM(X → 0) = X2

[
1

2
log

(
X

2

)
+

1

4

]
− X4

[
1

8
log

(
X

2

)
+

5

32

]
+ O(X5), (4.14)

Ksp(X → 0) = πX5

5
− πX7

2
+ O(X9). (4.15)

The orders of magnitude and the qualitative pattern of the K are much the same as those
of the analogous functions L for β. To make this clear, figure 5 plots the resultants K and L,
and tables 1 and 2 indicate the asymptotically leading terms of their constituents, along with
their ratios. They show that the familiar virial theorem K/L = 1/2 never applies to photons,
neither for large X nor for small; nor to surface plasmons at small X. But for large X it does
apply, to leading order, to the surface plasmons, and thereby to K and L in toto: under these
conditions roughly half of β is indeed potential energy, in the sense that it resides in the fields
(on closer examination, in the electric field).
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Table 1. Leading terms when X � 1.

TE TM sp Total

L −X
[

π
4

] − 1
15 log

(
X
2

)− 31
225 X5/2

[ 2π
5

] �Lsp

K −X
[

π
2

] − 1
5 log

(
X
2

)− 26
75 X5/2

[
π
5

] �Ksp

K/L 2 3 + O(1/ log(X) 1/2 �1/2

Table 2. Leading terms when X � 1.

TE TM sp Total

L X2
[ 1

2 log
(

X
2

)
+ 1

4

]
X2

[ 1
2 log

(
X
2

)
+ 3

4

]
X3

[
π
3

] �Lph � X2
[
log

(
X
2

)
+ 1

]
K X2

[ 1
2 log

(
X
2

)− 1
4

]
X2

[ 1
2 log

(
X
2

)
+ 1

4

]
X5

[
π
5

] �Kph � X2 log
(

X
2

)
K/L 1 + O(1/ log(X) 1 + O(1/ log(X) X2

[ 3
5

] �Kph/Lph � 1 + O(1/ log(X)

4.3. The inconsistency of very strong coupling (X → 0)

At this point one can show that very small X is incompatible with our underlying assumption
that the fluid moves nonrelativistically. For that to be the case |κ| must evidently be much less
than the rest-energy nmc2 per unit area, requiring χ � 1, with the ratio χ defined as

χ ≡
∣∣∣ κ

nmc2

∣∣∣ = 1

nmc2

h̄cq3

4π2
|K| = 2√

π

(
(λc/2π)

a

)
1

X3
|K(X)|, λc/2π ≡ h̄/mc.

(4.16)

Evidently λc/2π is the reduced Compton wavelength of the charge carriers; in reasonable
models of nonrelativistic systems it should be much shorter than the mean spacing a, so that

λc/2πa � 1. (4.17)

Note that this is a purely geometric condition, independent of the coupling-strength parameter
q. More specifically, if we envisage the charge carriers as electrons, and correspondingly take
a ∼ aB , then

λc/2πa ∼ α � 1/137. (4.18)

As X → ∞, table 1 reminds one that K ∼ X5/2, whence

χ ∼ (λc/2πa) X−1/2 � 1, (X � 1), (4.19)

as required. With (4.18) and with the corresponding estimate X ∼ 1/α2, one would have
χ ∼ α2 ∼ 10−4, the typical relative order of magnitude of relativistic corrections in atomic
physics.

By contrast, as X → 0, table 2 gives K ∼ X2 log(X), whence

χ ∼ (λc/2πa) X−1 log(X), (X � 1). (4.20)

To appreciate the implications, we recall that only X ∼ a/r0 = amc2/e2 depends on the
interaction between the plasma and the field. Thus the strong-coupling limit is best envisaged
as X → 0 at fixed λc/2πa, and it is in this sense that (disregarding the logarithm),

χ � 1 ⇒ X � λc/2πa ∼ α ∼ 10−2, (X � 1), (4.21)

if we adhere to estimate (4.18). Admittedly this condition is not all that restrictive: one could
reasonably regard it as satisfied by any X � 10−1.
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Appendix A. Levinson’s theorem

For any given scattering channel there is generally a relation between the number nb of bound
states and the change δ(p = 0) − δ(p → ∞) of the phase shift from threshold to infinity.
In all the cases that concern us here, we can and do choose δ(p → ∞) = 0, and shall talk
simply of δ(0). In nonrelativistic potential theory the relation is called Levinson’s theorem,
and modern methods tend to prove it by using the analyticity properties of the S matrix, and of
suitably defined solutions of the 3D Schrödinger equation (see, e.g., Goldberger and Watson
(1964), Newton (1982)). The case of relativistic particles described by the Dirac equation is
more subtle, and still under study (see, e.g., Calogeracos and Dombey (2004)); and as regards
electromagnetic scattering the writer knows of no general results.

Nevertheless, one can gain some insight through more old-fashioned proofs of Levinson’s
theorem, which reason from the constancy of the number of states (the dimensionality of the
Hilbert space) as the potential is switched on. The idea is that without the potential all states
are in the continuous spectrum (positive energy), that any bound state is formed by a state
moving down from positive to negative energy, and that this move changes δ(0) by π . For
even-parity solutions of the 1D Schrödinger equation with a reflection-symmetric potential,
such an argument (Barton 1985) yields

δ(+)(0) = π
(
n

(+)
b − 1/2

)
, (1D Schrödinger equation, even parity). (A.1)

It may be compared with the theorem for the partial-wave phase shifts in spherically symmetric
potentials, which reads

δ(l)(0) = πn
(l)
b , (3D Schrödinger equation with spherical symmetry). (A.2)

All we shall do here is to compare the actual behaviour of our TE and TM phase shifts
with what might have been expected in the light of (A.1) or of (A.2). It seems natural to
look for similarities between the 1D Schrödinger system and our Maxwell waves having given
polarization and fixed k. (For simplicity we do not pursue the peculiarities of the special case
where k = 0.) The outcome is surprising, and instructive if only as a caution against seeing
analogies where none exist in fact; and also perhaps as an incentive for a systematic search
for Levinson-type theorems applicable to electromagnetic scattering by materials of various
kinds. Meanwhile, we merely consider some mathematical facts for the very special model
under study: the poles of the TM amplitudes are also treated as mere facts, with no attempt to
relate them a priori to the threshold behaviour of the phase shift µ, or to the existence of the
surface modes.

Section 2.2 has noted that the TE phase shift specified by (2.16) obeys η(p = 0) = −π/2.
This tallies with (A.1) if we take n

TE,+
b = 0, conformably with there being no TE

bound modes. The correspondence is no accident. If one represents the TE fields through
their Debye potentials ψ , say through

ETE ∼ ∇ × [ẑ exp (ik · s)ψTE(z)], (A.3)

(adapted to 1D from the 3D treatment given e.g. Bouwkamp and Casimir (1954), or Jackson
(1975)), then ψ turns out to obey the same equation and the same matching conditions as the
1D Schrödinger wavefunction in the presence of a repulsive potential proportional to δ(z).
Such a potential is well defined, and naturally lacks bound states. Since the equations are
isomorphic, so are the solutions, and Levinson’s theorem applies to TE as of right. The same
is true in 3D (see B.III): the TE partial waves scattered from a spherical shell satisfy (A.2).

TM phase shifts behave quite differently. Equation (2.16) shows that µ(p = 0, k �= 0) =
0, which cannot be made to tally with (A.1) for any integer value of nb. This discrepancy
reflects the fact, contrary to what uncritical inspection might suggest, that with respect to
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dependence on energy or frequency the matching conditions for the TM Debye potential are
by no means similar to those for a Schrödinger equation with a potential proportional to11

δ′(z) (nor with any other local potential).
Finally, it is instructive to count states. Since µ is the same at p = 0 and at p = ∞

(namely zero), just as it would be in the absence of the sheet (when it vanishes identically at
all p), the number of states in the TM continuum is also the same with the sheet as without.
(To see this one discretizes the states as we did in section 3.3.1, and as for the proof of the 1D
Levinson’s theorem (Barton 1985).) It follows that the bound mode is not a continuum mode
attracted below threshold by interaction with the sheet. Rather it must be counted additionally
to the TM photon modes, as confirmed by its survival in the NR model (which is constructed
from electrostatics with no reference to photons). Essentially the same physics operates for the
3D spherical shell, subject to the complication that in 3D the exact theory dissolves the bound
modes of the NR model (B.IV) into the continuum. Thus the continuum of each exact TM
partial wave contains one more state than it would in the absence of the shell. Correspondingly,
the TM phase shifts in 3D obey a kind of anti-Levinson theorem: one finds δTM

l = −π , as if
one had ( A.2) with nb = −1.

Appendix B. The nonretarded model

We adapt the theory elaborated in B.IV for a spherical shell, to construct a model with
close similarities to Fetter’s (1973) theory for a 2D Fermi gas. The model admits only
nonretarded Coulomb forces: thus there is no B field, no photons, and the electric field is
purely longitudinal:

E = −∇�, ∇2�(r) = −4πσ(s)δ(z − z′), �(s, |z| → ∞) = 0,

where σ = −ne∇‖ · ξ. Accordingly, Newton’s second law reads

··
ξ = −(e/m)∇‖� ⇒ ξ(s) ≡ −∇‖�(s), �̈(s) = (e/m)�(s, z = 0), (B.1)

with the displacement potential �(s) defined only on the sheet. Thus ξ is curl-free, and for
any normal mode one has

�ω and �ω ∝ exp(−iωt) ⇒ �ω(s) = −(e/mω2)�ω(s,z = 0), (B.2)

discont(�) = 0, discont

(
∂�ω

∂z

)
= −4πσ = 4πne2

mω2
∇2

‖�ω. (B.3)

The energy is∫
d2s

1

2
nm

·
ξ2 +

1

2

∫ ∫
d2s d2s ′ σ(s)σ (s′)

|s − s′| =
∫

d2s

{
1

2
nm

·
ξ2 +

1

2
σ�

}
. (B.4)

The only normal modes are surface plasmons with frequency �NR given by

�2
NR = 2πne2k/m = c2qk, (B.5)

where we have admitted the combination q from (2.5) because it permeates the properly
retarded theory, even though in the nonretarded model c and q separately play no role.

11 Worse, potentials proportional to δ′(z) in the Schrödinger equation are under-defined (unlike δ(z)), a fact well
known to but not very tellingly advertized by mathematicians. For instance, significantly different consequences
follow depending on whether one treats δ′(z) as the limit of local or of separable representations (Barton and Waxman
1993). Worse still, in both cases the limit produces perfect reflection, i.e. T = 0, at all p, incompatibly with (2.15).
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To turn (B.4) into

HNR = h̄

2

∫
d2k �NR

(
a
†
kak + aka

†
k

)
,

[
ak, a

†
k

] = δ(k − k′),

one quantizes with

� =
∫

d2k

√
h̄�NR

4πk
ak exp (−i�NRt + ik · s − k |z|) + Hc. (B.6)

The expansions of � and of ξ then follow on setting ω → �NR in (B.1), (B.2).
Recall that sums per unit area are given by

∫
d2k/(2π)2 . . . . Thus the zero-point energy

per unit area reads

βNR =
∫ K

0

2πdk k

(2π)2

h̄�NR

2
= h̄c

√
q

4π

∫ K

0
dk k3/2 = h̄c

√
q

K5/2

10π
= 4π3/4

5
h̄

√
e2

ma7
. (B.7)

Since the system is, in effect, a set of nonrelativistic oscillators, the standard virial theorem
applies: the ground-state expectation values of the kinetic and of the potential energies, i.e. of
the first and the second terms in (B.4), are each equal to βNR/2. The model is so simple that
the conclusion is easily verified by direct calculation.

Appendix C. The integrals HTE and HTM in β

An integration by parts puts HTE, as defined by (3.15), (3.17), into the form

HTE = 1 − πy

2
+ lim

x→∞

{
log

( y

2x

)
+
∫ x

0
dx ′

√
x ′2 + y2

(x ′2 + 1)

}
. (C.1)

On rationalizing the integrand by changing the variable from x ′ to ξ =
√

x ′2 + y2 + x ′, this
becomes manageable, and eventually yields (3.22).

For HTM as defined by (3.16), (3.17) one starts likewise with an integration by parts, and
finds

HTM =
∫ ∞

0
dx

{√
x2 + y2(x2 − y2)

(x2 + y2)2 + x2
+

1√
x2 + y2

− 2x2

(x2 + y2)3/2

}
. (C.2)

This too is best approached as an indefinite integral with a finite but very large upper
limit, which afterwards is allowed to tend to infinity. The first term proves extraordinarily
troublesome, least so if one uses complex partial fractions to re-express its integrand as√

x2 + y2

[
y2

x2 + y2
2

− y1

x2 + y2
1

]
, y1,2 ≡ 1

2
(
√

4y2 + 1 ∓ 1), (C.3)

with extensive use of the relations12

y2 − y1 = 1, y1y2 = y2, y2 − y2
1 = y1, y2

2 − y2 = y2. (C.4)

Then, rationalizing the integrand by the same change of variable as for HTE, one eventually
arrives at

HTM = 2 − √
y2 tanh−1

(
1√
y2

)
− √

y1 tan−1

(
1√
y1

)
. (C.5)

Finally, integration over y yields (3.24). (Unfortunately, it seems impossible to exploit the
apparent kinship with the function A(ζ ) from B.VI.)

12 These are analogous to (3.19), in the sense that they reproduce it on replacing (y, y1, y2) → (X, X1, X2).
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